1. Park KS. The search for genetic risk factors of type 2 diabetes mellitus. Diabetes & Metabolism Journal. 2011; 35(1): 12-22.
2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice. 2011; 94(3): 311-21.
3. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet. 2014; 383(9922): 1068-83.
4. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2008; 26(2): 77-82.
5. Rich SS. Mapping genes in diabetes: Genetic epidemiological perspective. Diabetes. 1990; 39(11): 1315-19. [
DOI:10.2337/diab.39.11.1315]
6. Lindstrom J. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet. 2006; 368: 1673-9.
7. Nasykhova YA, Barbitoff YA, Serebryakova EA, Katserov DS, Glotov AS. Recent advances and perspectives in next generation sequencing application to the genetic research of type 2 diabetes. World Journal of Diabetes. 2019; 10(7): 376-395.
8. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The lancet. 2017; 389 (10085): 2239-51.
9. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ. Type 2 diabetes mellitus. Nature Reviews Disease Primers. 2015; 1 (1):1-22.
10. Consortium IH. A haplotype map of the human genome. Nature. 2005; 437 (7063): 1299-320.
11. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy‐Moonshine A, et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics. 2013; 43(1): 11-0.
12. Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nature Genetics. 2011; 43 (10): 984-9.
13. Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56:1958-63.
14. Szopa M, Ludwig-Słomczyńska A, Radkowski P, Skupień J, Zapała B, Płatek T, et al. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young. Polish Archives Of Internal Medicine. 2015;125(11). 845-51.
15. Fareed M, Chauhan W, Fatma R, Din I, Afzal M. Next-generation sequencing technologies in diabetes research. Diabetes Epidemiology and Management. 2022:100097.
16. Ang SF, Lim SC, Tan CS, Fong JC, Kon WY, Lian JX, et al. A preliminary study to evaluate the strategy of combining clinical criteria and next generation sequencing (NGS) for the identification of monogenic diabetes among multi-ethnic Asians. Diabetes Research and Clinical Practice. 2016; 119: 13-22.
17. Khan IA. Do second generation sequencing techniques identify documented genetic markers for neonatal diabetes mellitus?. Heliyon. 2021;7(9): e07903.
18. Cryns K, Sivakumaran TA, Van den Ouweland JM, Pennings RJ, Cremers CW, Flothmann K, et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Human Mutation. 2003; 22(4): 275-87.
19. Rigoli L, Lombardo F, Di Bella C. Wolfram syndrome and WFS1 gene. Clinical Genetics. 2011; 79(2): 103-17.
20. Minton JA, Hattersley AT, Owen K, McCarthy MI, Walker M, Latif F, et al. Association studies of genetic variation in the WFS1 gene and type 2 diabetes in UK populations. Diabetes. 2002; 51(4): 1287-90.
21. Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nature Genetics. 2007; 39(8): 951-3.
22. Franks PW, Rolandsson O, Debenham SL, Fawcett KA, Payne F, Dina C, et al. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia. 2008; 51: 458-63. [
DOI:10.1007/s00125-007-0887-6]
23. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: genetic polymorphisms and risk of diabetes mellitus. Journal of Diabetes Research. 2015; ID 908152.
24. Phani NM, Guddattu V, Bellampalli R, Seenappa V, Adhikari P, Nagri SK, et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: A case-control and meta-analysis study. PLoS One. 2014; 9(9): e107021.
25. Qiu L, Na R, Xu R, Wang S, Sheng H, Wu W, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PloS one. 2014; 9(4): e93961.
26. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. New England Journal of Medicine. 2006; 355(5): 456-66.
27. Haghverdizadeh P, Haerian MS, Haghverdizadeh P, Haerian BS. ABCC8 genetic variants and risk of diabetes mellitus. Gene. 2014;545(2):198-204.
28. Dorajoo R, Liu J, Boehm BO. Genetics of type 2 diabetes and clinical utility. Genes. 2015; 6(2): 372-84.
29. Floyd JS, Psaty BM. The application of genomics in diabetes: barriers to discovery and implementation. Diabetes Care. 2016; 39(11): 1858-69.